首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1177篇
  免费   112篇
  国内免费   419篇
化学   1422篇
晶体学   20篇
力学   38篇
综合类   14篇
数学   94篇
物理学   120篇
  2024年   15篇
  2023年   66篇
  2022年   146篇
  2021年   137篇
  2020年   166篇
  2019年   134篇
  2018年   75篇
  2017年   82篇
  2016年   83篇
  2015年   67篇
  2014年   102篇
  2013年   109篇
  2012年   84篇
  2011年   57篇
  2010年   40篇
  2009年   50篇
  2008年   50篇
  2007年   54篇
  2006年   39篇
  2005年   29篇
  2004年   27篇
  2003年   21篇
  2002年   10篇
  2001年   8篇
  2000年   12篇
  1999年   3篇
  1998年   2篇
  1997年   5篇
  1996年   7篇
  1995年   3篇
  1994年   4篇
  1993年   4篇
  1992年   3篇
  1991年   4篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
排序方式: 共有1708条查询结果,搜索用时 15 毫秒
81.
Zirconium-based metal-organic framework materials (Zr−MOFs) have more practical usage over most conventional benchmark porous materials and even many other MOFs due to the excellent structural stability, rich coordination forms, and various active sites. However, their mass-production and application are restricted by the high-cost raw materials, complex synthesis procedures, harsh reaction conditions, and unexpected environmental impact. Based on the principles of “Green Chemistry”, considerable efforts have been done for breaking through the limitations, and significant progress has been made in the sustainable synthesis of Zr−MOFs over the past decade. In this review, the advancements of green raw materials and green synthesis methods in the synthesis of Zr−MOFs are reviewed, along with the corresponding drawbacks. The challenges and prospects are discussed and outlooked, expecting to provide guidance for the acceleration of the industrialization and commercialization of Zr−MOFs.  相似文献   
82.
In this study, a Zr metal–organic framework (UIO‐66) was synthesized with zirconium tetrachloride and terephthalic acid using the solvent method. Then various masses of 1‐methylimidazolium‐3‐propylsulfonate hydrosulfate (PSMIMHSO4) were supported on the UIO‐66 as catalysts, which were used for catalytic oxidative desulfurization. Sulfur removal using 400 mg of 40% PSMIMHSO4 supported on the UIO‐66 of greater than 94% was obtained at 313 K for 20 min with an O/S molar ratio of 7:1. The results obtained in this work could provide useful information for the design of water‐stable metal–organic frameworks with permanent porosity in applications of catalytic oxidative desulfurization. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
83.
Abstract . The solvothermal reaction between cuprous iodide and the rigid triangular imidazole ligand in mixed N,N′‐dimethylacetamide (DMA)‐acetonitrile solvent leads to the isolation of the 3D metal‐organic framework [(Cu4I4)3(TIPA)4] · 7DMA ( 1 ) [TIPA = tri(4‐imidazolylphenyl) amine], which was characterized by elemental analysis, IR spectroscopy, powder X‐ray diffraction, and single‐crystal X‐ray diffraction. Topologically, the structure of 1 is an unprecedented 3,3,4,4‐connected net with a point symbol of {4.8.10}2{4.82}2{42.82.102}2{84.122}. Compound 1 exhibits orange‐red photoluminescence with an emission maximum at 622 nm at room temperature.  相似文献   
84.
Palladium nanoparticle‐incorporated metal–organic framework MIL‐101 (Pd/MIL‐101) was successfully synthesized and characterized using X‐ray diffraction, nitrogen physisorption, X‐ray photoelectron, UV–visible and infrared spectroscopies, and transmission electron microscopy. The characterization techniques confirmed high porosity and high surface area of MIL‐101 and high stability of nano‐size palladium particles. Pd/MIL‐101 nanocomposite was investigated for the Sonogashira cross‐coupling reaction of aryl and heteroaryl bromides with various alkynes under copper‐free conditions. The reusability of the catalyst was tested for up to four cycles without any significant loss in catalytic activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
85.
A novel and simple approach for the efficient and rapid synthesis of pyrano[2,3‐c]‐pyrazoleshas been accomplished via the four‐component condensation reaction of malononitrile, hydrazine hydrate, ethyl acetoacetate, and substituted aldehydes using MIL‐53(Fe) metal–organic framework (MOF) as a catalyst in ethanol at room temperature. Recycling studies have shown that the MIL‐53(Fe) can be readily recovered and reused six times without significant loss of its activity. The present protocol offers the advantages including short reaction times, simple workup, high yields, elimination of toxic solvents, no chromatographic purification and recoverability of the catalyst. Also, the catalyst was fully characterized by SEM, EDX, FT‐IR, XRD, TGA and TEM analysis.  相似文献   
86.
Covalent organic frameworks(COFs) are emerging photocatalysts for hydrogen evolution in water splitting in recent years. They offer a pre-designable platform to design tailor-made structures and chemically adjustable functionality in terms of photocatalysis. In this review, we summarize the recent striking progress of COF-based photocatalysts in design and synthesis. Firstly, different approaches to functionalizing building blocks, diversifying linkages, extending π-conjugation and establishing D-A conjugation are illustrated for enhancing photocatalytic activity. Next, post-modification of backbones and pores is detailed for emphasizing the synergistic catalytic uniqueness of COFs. Besides, the strategy of preparing COF-related composites with various semiconductors is outlined for optimizing the electronic properties. Finally, we conclude with the current challenges and promising opportunities for the exploration of new COF-based photocatalysts.  相似文献   
87.
In this paper, a novel lanthanum metal–organic framework La‐MOF was prepared via hydrothermal and reflux methods. The La‐MOF was achieved through the reaction of a 5‐amino‐isophthalic acid with 1, 2‐phenylenediamine and lanthanum chloride. The prepared La‐MOF structure was confirmed by XRD, mass spectrometry, IR, UV–Vis and elemental analysis, whereas the size, and morphology was examined by FE‐SEM/EDX and HR‐TEM. The results indicated that the La‐MOF prepared via both methods have the same structure and composition. Meanwhile, the MOF yield, reaction time, morphology, physiochemical and sensing properties were highly depended on the used preparation method. The photoluminescence (PL) study was carried out for the La‐MOF, and the results showed that La‐MOF exhibits strong emission at 558 nm after excitation at 369 nm. Moreover, the PL data indicating that the La‐MOF has highly selective sensing properties for iron (III) competing with different metal ions. The Stern‐Völmer graph shows a linear calibration curve which achieved over a concentration range 1.0–500 μM of Fe3+ with a correlation coefficient, detection, and quantitation limits 0.998, 1.35 μM and 4.08 μM, respectively. According to the remarkable quenching of the PL intensity of La‐MOF using various concentrations of Fe3+, it was successfully used as a sensor for Fe3+detecting in different water resources (pure and waste) samples. The quenching mechanism was studied and it has a dynamic type and due to efficient energy transfer between the La‐MOF and Fe3+.  相似文献   
88.
With [5,10,15,20‐tetra(4‐carboxyphenyl)porphyrin]Mn(III) and sterically controlled 2,2¢‐dimethyl‐4,4¢‐pyridine as the main raw materials, metal–organic framework thin films containing metalloporphyrin (MnPor‐MOF) with catalytically active sites were built up on functionalized quartz glass surfaces using a layer‐by‐layer self‐assembly method. Retaining active catalytic sites and having a porous reticular structure, the MnPor‐MOF films possessed remarkable photocatalytic activity for oxidative degradation of methylene blue in the presence of hydrogen peroxide under visible‐light irradiation. Most meaningfully, the MnPor‐MOF films were highly stable and simply and conveniently reusable, and are thus a potentially new organic material for photocatalytic wastewater treatment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
89.
For the ordered phases of hairy‐rod semiconductive poly(2,5‐bis(3‐tetradecylthiophene‐2‐yl)thieno[3,2‐b]thiophene) (PBTTT) sandwiched in between crystalline platelets of hexamethylbenzene, the successive stepwise evolution of layer‐stacking framework upon guest intercalation has been studied in this research. The direct consequence of the guest intercalation into side‐chain layers is evaluated to cause the lateral shift of thiophene backbones along π–π stacking, resulting in stepwise shift of ultraviolet absorption wavelength. The thermal motions of vapor guests within disordering side‐chain layers subsequently cause progressive expansion of host stacking framework. With the increase in side‐chain length, thicker layers of disordering side chains in liquid crystals (LCs) accommodate additional vapor guests and larger amplitudes of thermal motions of guests, hence promoting the level of reversible d‐spacing change. The mixing between mobile vapor guests and aliphatic side chains is clarified as the mechanism of guest intercalation, which rationalizes successive guest intercalation during heating and the contribution of disordering side‐chain layers. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1448–1456  相似文献   
90.
Three open-framework iron phosphites: Feп5(NH4)2(HPO3)6 (1), Feп2Fe(NH4)(HPO3)4 (2) and Fe2(HPO3)3 (3) have been synthesized under ionothermal conditions. How the different synthesis parameters, such as the gel concentrations, synthetic times, reaction temperatures and solvents affect the products have been monitored by using high-throughput approaches. Within each type of experiment, relevant products have been investigated. The optimal reaction conditions are obtained from a series of experiments by high-throughput approaches. All the structures are determined by single-crystal X-ray diffraction analysis and further characterized by PXRD, TGA and FTIR analyses. Magnetic study reveals that those three compounds show interesting magnetic behavior at low temperature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号